Cell Growth and Reproduction

Describe cells that make up a multicellular organisms...

Comes in wide variety of shapes and sizes

Name the cell with the largest diameter.

Yolk of an ostrich egg

Name the diameter range of most living cells.

2 to 200 ym (micrometers)

Factors that Cause Cell Size Limitations

Why can't most organisms be just <u>one</u> <u>giant</u> cell?

Diffusion would be rapid

Diffusion would start to <u>slow</u> down

Diffusion would be **extremely** slow

Name the organelle where DNA (blueprint) is located.

* Inside nucleus of the cell.

Explain how DNA limits cell size?

Need to understand...

DNA is copied at a **certain rate**. If this rate <u>slows</u> down, <u>less</u> DNA is copied.

Therefore...

Cells cannot survive when there is <u>not</u> enough DNA to support original protein function. If a certain number of DNA is required, how then do <u>larger</u> cells such as amoeba survive?

Needs many nuclei in order
 to produce enough DNA

Surface Area to Volume Ratio

SA: LxWx6 (1mm)

SA: 6mm²

SA: LxWx6 (2mm) SA: 24mm²

SA: LxWx6 (4mm) SA: 96mm²

Volume: LxWxH
(1mm)
Volume = 1mm³

Volume: LxWxH
(2mm)
Volume = 8mm³

Volume: LxWxH
(4mm)
Volume = 64mm³

Surface Area to Volume Ratio

- Surface area is increasing slower by 4 times.
- ❖ Volume is increasing faster by <u>8</u> times
- Not enough surface area to allow nutrients and waste to diffuse through
- Cell would eventually starve and die
- Therefore, cells <u>divide</u> before they become too <u>large</u> to <u>function</u>.

Cell Reproduction

- Recall: List the <u>3</u> parts of the "cell theory".
- 1.) All living things are made up of $\underline{1}$ or more cells.
- 2.) Cells come from other pre-existing cells.
- 3.) Cells are the basic unit and structure of life.

Cell Reproduction

Cell division results in <u>two</u> cells that are <u>identical</u> to the original <u>parent</u> cell.

Cell Reproduction

Why does cell division occur in our bodies?

- To replace worn out cells/tissues
- * To grow
- * To replace dying cells
- To help heel cuts and bruises
- * To help with digestion

Define Chromosomes.

- Chromosomes are dark colored structures that contain DNA in the nucleus.
- Carriers genetic material of living things.

The Greek words...

chroma...meaning colored

soma...meaning body

Vocabulary

Karyotype is a photomicrograph picture of chromosomes

Vocabulary (draw in upper left of box)

Chromosome

❖Single DNA

molecule with

proteins

*Rod in shape

Vocabulary (draw in upper right of box)

together

Sister chromatids

- ♦ ½ of a chromosome
- *2 <u>chromatids</u> makes up <u>1</u> whole chromosome.

Vocabulary (bottom picture)

Protein called **histones**. Beads that allow DNA to coil up tightly

Define cell cycle.

The cell cycle is the sequence of growth and division of a cell

How many periods are in the cell cycle. Name them.

Growth

Division of a cell

Name the phase where the majority of a cell's life is spent.

- Interphase
 - → Where cell spends 90% of cell cycle

Name the <u>4 events</u> that occur in this phase of a cell cycle.

- 1.) Growth
- 2.) DNA Replication
- 3.) Carries out metabolic activities
- 4.) Prepares for cell division

Name and define *phase 2* that follows after phase 1, Interphase.

* Mitosis

→ Process by which 2 daughters cells are formed each containing identical chromosomes.

Name and define phase 3 that follows after phase 2, Mitosis.

→ When either the cell membrane or cell wall reforms in order to separate the cells into two.

Phase 1: Interphase

- Visible chromosomes cannot be seen
- DNA replicating (copying)
- Cell is growing
- Longest part of the cell cycle (90%)
- Pre-stage before actual mitosis begins

Nucleus

Phase 2: Prophase

Nuclear membrane begins to break down

Chromosomes pair up and start becoming visible

Nuclear Membrane

Phase 3: <u>Meta</u>phase Means "middle" Centriole Spindles

- Chromosomes line up vertically at the metaphase plate (equator)
- ❖Spindles (fishing line)
 form and attach to
 chromosomes
- Centrioles form (boxes). Acts as reel of fishing rod or like magnets.

Phase 4: Anaphase

- Chromosomes splitapart
- *Sister chromatids
 move to opposite
 sides of centrioles
 (poles)
- Spindles shorten to reel sister chromatids in

- Nuclear membrane reforms
- Chromosomes straighten out
- Plant Cell: cell wall forms
- *Animal Cell: cell membrane closes inward and pinches off to make 2 identical cells

(cytokinesis)

Formula for Mitosis

❖ n = number of chromosomes present

Results of Mitosis (Organization Level)

- * Cells
 - * Tissues

Organs

Organs Systems

Organisms

